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ABSTRACT 

 

In a passive radio-frequency identification (RFID) system the reader communicates with 

the tags using the EPC Global UHF Class 1 Generation 2 (EPC Gen-2) protocol with dynamic 

framed slotted ALOHA. Due to the unique challenges presented by a low-power, random link, the 

channel efficiency of even the most modern passive RFID system is less than 40%. Hence, a 

variety of methods have been proposed to estimate the number of tags in the environment and set 

the optimal frame size. Some of the algorithms in the literature even claim system efficiency 

beyond 90%. However, these algorithms require fundamental changes to the underlying protocol 

framework which makes them ineligible to be used with the current hardware running on the EPC 

Gen-2 platform and this infrastructure change of the existing industry will cost billions of dollars. 

Though numerous types of tag estimation algorithms have been proposed in the literature, none 

had their performance analyzed thoroughly when incorporated with the industry standard EPC 

Gen-2. In this study, we focus on some of the algorithms which can be utilized on today’s current 

hardware with minimal modifications. EPC Gen-2 already provides a dynamic platform in 

adjusting frame sizes based on subsequent knowledge of collision slots in a given frame. We 

choose some of the popular probabilistic tag estimation algorithms in the literature such as 

Dynamic Frame Slotted ALOHA (DFSA) – I, and DFSA – II, and rule based algorithms such as 

two conditional tag estimation (2CTE) method and incorporate them with EPC Gen-2 using 

different strategies to see if they can significantly improve channel efficiency and dynamicity. The 

results from each algorithm are also evaluated and compared with the performance of pure EPC 
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Gen-2. It is important to note that while integrating these algorithms with EPC Gen-2 to modify 

the frame size, the protocol is not altered in any substantial way. We also kept the maximum system 

efficiency for any MAC layer protocol using DFSA as the upper bound to have an impartial 

comparison between the algorithms. Finally, we present a novel and comprehensive analysis of 

the probabilistic tag estimation algorithms (DFSA-I & DFSA-II) in terms of their statistically 

significant correlations between channel efficiency, algorithm estimation accuracy and algorithm 

utilization rate as the existing literature only look at channel efficiency with no auxiliary analysis. 

In this study, we use a scalable and flexible simulation framework and created a light-weight, 

verifiable Gen-2 simulation tool to measure these performance parameters as it is very difficult, if 

not impossible, to calculate system performance analytically. This framework can easily be used 

to test and compare more algorithms in the literature with Gen-2 and other DFSA based 

approaches.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction to RFID  

In recent years, Radio frequency identification (RFID) technology has become one of the 

most commonly used technology in our daily life and is getting more prevalent in daily 

applications where automatic identification of objects is needed. RFID was first used in World 

War 2 by the Allied armed forces to discriminate friendly aircraft and tanks from enemy ones, 

called IFF (Identify Friend or Foe). Though it was first introduced decades ago, RFID technology 

has seen exponential gains in its application domains over the past decade or so. To cope with 

increasing logistical overheads, costs, product losses and overall inefficiency, both Department of 

Defense and Walmart authorized their respective delegates and suppliers to use RFID systems[1]. 

Now-a-days most of the supply chain giants and other dominant sectors use RFID. Some of the 

popular domains which use RFID technology are supply chain management, agriculture, military, 

healthcare, pharmaceuticals and retail.  

Radio frequency identification (RFID) is an automatic identification process, where 

through the means of radio waves, required information is collected from a particular object which 

is to be identified without physical proximity or line of sight. Regardless of the type of the 

technology, i.e. the type and classification of the tags, readers, antennas and operating frequency, 

a typical RFID system consists of three main components: tags, reader and a data processing 

subsystem or server. It works by establishing a wireless link between the reader and the tag. A 
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reader or interrogator identify objects that are labeled with RFID tags. A back end server or 

subsystem further processes and stores the information generated by the tag and the reader.   

Although, RFID has similarities to the other automatic identification technologies such as 

barcodes, iris scanners, magnetic ink, touch memory etc., this technology has massive commercial 

prospective as it offers abundant benefits which are not feasible for more traditional identification 

technologies. Some of the advantages the technology possesses are [2]: 

i) RFID tags have a larger read range than barcodes; 

ii) In RFID systems, the tag’s position is not a critical factor as in barcodes;  

iii) Instead of being read one by one as in barcodes, multiple tags can be identified at the same 

time in this system, which makes it much more efficient.  

iv) Unlike barcodes, RFID tags has a larger memory which enables them to store more data than 

just an ID.  

v) RFID tags have read-write memory capability which allows the system to dynamically 

modify tag information as per the requirements of the application they are used for.  

vi) RFID tags lessen the inventory control cost, save time and decrease errors as the 

identification process does not require human supervision.  

vii) By combining sensors and other functionalities, RFID tags can perform auxiliary tasks like 

temperature monitoring, product quality calculation etc.  

These features make RFID dominant when it comes to feasible commercial solutions. 

Having said that, it is critical that we understand RFID technology still faces a unique set of 

challenges [3]. It is also worth noting that different RFID technologies have different design 

requirements, protocols, performance specifications etc. to achieve the performance level they are 

known for.  



www.manaraa.com

3 

In this study, we are going to focus on the ultra-high frequency passive RFID systems 

which operate in 860 MHz to 960 MHz range. This particular type of RFID platform uses the 

industry standard EPC Gen-2 communication protocol [4] which is the prime focus of this study.  

1.2 Basic Building Blocks of an RFID System 

A typical RFID system involves a reading device or interrogator called a reader which 

communicates with one or more tags or transponders for identification. Upon receiving a signal 

from the reader, the tags get energized and send information as required by the reading device. A 

data processing server exists in the back end for receiving this information and for further 

processing and computing which facilitates both the tag and the reader. Figure 1.1 shows the basic 

operation of RFID [5, 6]. 

 

Figure 1.1: Basic operation of RFID system 

In the following subsections, we will briefly discuss the basic building blocks of RFID.   
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1.2.1 RFID Tags 

Tags are one of the elementary units of RFID system. They are attached to the objects or 

products that are to be identified. A tag consists of an integrated circuit and a coupling element, 

i.e. antenna. Depending on the type of the tag, it may or may not have an on-board power source.  

The type of tags defines the RFID variants. The choice of tags also outlines the area of 

application for which the RFID system is chosen for. 

Based on their power usage, there are three types of RFID tags which are briefly presented 

in the following sections [2, 3, 6, 7]. 

1.2.1.1 Active Tags 

Active tags are supported by ultra-high frequency and microwave systems. They are the 

most expensive ones due to their read and write capability, larger memory and on-board power 

source. The on-board power source accommodates the microchip and transceiver. Active tags can 

communicate independently and they do not have to rely on the reader’s emitted power for 

communication. Active systems have a read range of more than 100 meters.  

1.2.1.2 Semi-Passive Tags 

Semi-passive tags are supported only by ultra-high frequency systems. Like active tags, 

semi passive tags also have an on-board power source but only used for powering the tag’s 

microchip. They have to rely on the reader for data transmission. This type of tag is smaller 

compared to the active ones and has a shorter read range of 60 to 80 meters.  

1.2.1.3 Passive Tags 

This variant is supported by the low frequency, high frequency, ultra-high frequency and 

microwave systems. Passive tags have no internal power source. They have to rely solely on the 

reader’s energy in order to energize and transmit. It has the smallest read range from 0.1 to 
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typically 7 meters. Passive tags are the cheapest, thinnest and most flexible among the three which 

makes them very popular in the supply chain and retail industry.  

1.2.2 RFID Reader 

In an RFID system, a reader is one of the most important building blocks. A reader is 

basically a transceiver to interrogate the tags and read the information stored within. It has 

computational resources comparable to a computer. It generates and transmits electromagnetic 

wave through its antenna, internal or external to the reader and couples with the tags. It energizes 

and supplies power for data transmission to the tags if necessary. Readers can be classified in terms 

of mobility, i.e. stationary and mobile or handheld readers. They are generally connected to a 

computer or in the case of handheld readers a mobile computer can be built in the device providing 

a user interface to the user. For more sophisticated data processing, it sends the received 

information to the data processing subsystem or back end server. Hence the reader leaves most of 

the information and computational work for the connected back end server [5, 6, 8].   

1.2.3 Data Processing Subsystems  

Irrespective of the type of the technology, i.e. the type of the readers and the tags, a back 

end database or server is used to facilitate the system operation. A backend system pools collected 

data together to enable big data analytics and drive business operations by interfacing with other 

resource management software [5].  

1.3 RFID Operating Frequencies 

One key parameter based on which RFID systems can be categorized further is the 

frequency range on which they operate. Each operating frequency range defines a certain 

operational characteristic as well as restrictions on different components of the RFID system. It 

basically outlines the desired application environment which they can be used for. In short, 
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frequency is one of the most important factors one should consider when choosing an RFID system 

for a particular application for the most efficient use of the technology.  

There are four major frequency ranges as briefly discussed below [3, 6, 8].   

1.3.1 Low Frequency (LF) 

In low frequency RFID systems, the tags operate in a frequency range which is less than 

135 kHz. Most of the low frequency tags are passive tags which get their power from the reader. 

The read range is very small, typically up to 10 centimeters. Low frequency tags also have a data 

transfer rate of less than 10 kbits/sec. Typical use of low frequency RFID tags can be found in 

animal tagging, access control, vehicle identification, container tracking in waste management etc.  

1.3.2 High Frequency (HF) 

High frequency RFID technology operates at 13.56 MHz frequency which has a read range 

from 10 to 20 centimeters. The data transfer rate is less than 100 kbits/sec. The tags are mostly 

passive in this frequency range. 

Applications that entail moderate range are best fit for the high frequency tags. These tags 

are used mostly in access control, smart cards, item tagging, ticketing, document tracking, baggage 

control, laundries and libraries.  

1.3.3 Ultra-High Frequency (UHF) 

Ultra-high frequency RFID tags’ operating frequency range is from 860 MHz-960 MHz. 

Although, these tags have an average read range of 5 to 6 meters, modern larger UHF tags in ideal 

conditions can operate up to 30+ meter read range. The data transfer rate is 100 kbits/sec. UHF 

RFID systems supports all three types of tags.   

UHF RFID technology can be used in baggage handling, toll collection, supply chain 

management, pharmaceutical serialization, asset tracking, etc.  
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This study focuses on UHF RFID systems, as the industry standard anti-collision protocol, 

Gen-2 is used for this frequency range. 

1.3.4 Microwave  

RFID systems with microwave tags also known as super-high frequency tags have an 

operating frequency range of 2.45 GHz or 5.8 GHz. These tags have a very large read range and 

data transfer rate of 100 meters and less than 200 kbits/sec respectively. Microwave systems are 

more expensive than the three types mentioned earlier.  

The application of microwave systems includes electronic toll collection, real time valuable 

goods tracking, production line tracking etc.  

1.3.5 Ultra-Wideband (UWB) 

This is relatively a recent technology compared to the previously mentioned ones. UWB 

tags have an operating frequency from 3.1 GHz to 10.6 GHz. It offers a longer read range of 200 

meters, lower cost and multi path signal resistance.  It has great localization capabilities and can 

be used in hospitals for asset tracking as this technology can accommodate for both liquid and 

metal. 

1.4 Communication Principle of RFID 

In order to establish the primary wireless link between the tag and the reader, RFID uses 

radio waves. After being encoded and modulated by the user defined data, these signals are then 

transmitted, hence forming the basic functioning of RFID systems.  

The two prime methods through which tag and reader communicate are magnetic and 

electromagnetic coupling. The difference between these two systems is based on the EM properties 

of RF antenna, mainly, the operating range. The operating field can be divided into the near field 

and the far field and they are briefly described in the following two sections [3, 6, 8, 9].  



www.manaraa.com

8 

1.4.1 Near Field System 

The near field systems in RFID operate passively over the low frequency and high 

frequency spectrum. This is the system which uses magnetic field for coupling, i.e. the 

communication between the tag and the reader is obtained by magnetic induction. The term near 

field is defined as the region of one full wave length of the generated magnetic field by the reader’s 

antenna. By producing a time varying magnetic field which results in an AC voltage, the reader 

induces a tag. As the antenna of both the reader and the tag aim to achieve the maximum transfer 

of energy, the inducing AC voltage is then rectified to a DC voltage in order to power up the tag’s 

chip. 

The reader modulates the magnetic field through amplitude modulation to transmit 

information to a tag. Whereas, a tag sends its ID to a reader by load modulation, i.e. by turning the 

load on and off. By recognizing the variations in amplitude and decoding the reader gets the ID 

sent by the tag.  

Near field systems provides a robust link around dense RF media, excellent zone control, 

offers energy harvesting for passive high frequency and low frequency RFID systems. Having said 

that, it has many limitations as well such as the read range. Because the near field system is based 

on the magnetic induction process, as the frequency increases, the magnetic field’s intensity 

decreases by 1/𝑟3, where 𝑟 is the distance between the tag and the reader, when measured along a 

perpendicular line from the reader antenna plane. The data rate and bandwidth are also limited 

which impacts the multi tag arbitration capability. 

1.4.2 Far Field System 

Far field systems are also known as the backscatter systems based on electromagnetic 

coupling. The system’s operating region is ultra-high frequency and microwave range. As the 
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name implies, the region defined by far field systems is greater than at least one full wavelength 

of the electromagnetic signal emitted by the reader’s antenna. Both the reader and the tag use 

amplitude modulation technique and dipole antennas to transmit and receive signals. An AC 

voltage is generated at the reader’s dipole antenna through a continuous electromagnetic wave, 

which creates a potential difference between the tag’s dipole which in turn energize the tag’s chip. 

In accordance with the data that is to be sent back to the reader the tag modulates the amplitude of 

the electromagnetic waves which are reflected by the tag’s antenna, in other words “back 

scattering” the signal.  

Far field systems have a much longer read range because of higher power. They also offer 

a higher multi tag arbitration capability as the bandwidth is larger. Though these systems have 

longer read ranges, they suffer two attenuation process during both transmission and reception. 

The first attenuation process occurs when the signal travels from the reader to the tag and the 

second process occurs when the signal is reflected back from the tag. Hence, the signal decreases 

by 1/𝑟4, where 𝑟 is the distance between the tag and the reader. 

1.5 Applications of RFID 

RFID technology has gained significant ground over the past decade because of a 

combination of technical and commercial factors. Because of the numerous advantages it 

possesses, RFID has abundant applications in real world applications like healthcare, agriculture, 

manufacturing, access control, supply chain, tracking, finance among many others. In this section, 

we will briefly discuss a few more popular and recent applications of RFID [2, 3, 9]. 

i) Logistic and supply chain visibility and management 

This is one of the most popular and important application which is responsible for RFID 

technology to bloom. A supply chain involves a hectic environment of manufacturing, shipping, 
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tracking, warehousing and retailing. In manufacturing sector from inventory management to 

resource tracking and quality control everything can be automated with RFID. Warehouse picking, 

receiving and shipping can be managed without human intervention. In the shipping sector, 

material processing, distribution and safety benefit from visibility provided by RFID. In today’s 

world retailing is dominated by RFID, from inventory management to shelf stock checking, 

checking out management to point and time of purchase by the customer. RFID can track the shelf 

life of some perishable products to lessen wastage and improve quality. Supply chain giants like 

Walmart, Coca-Cola, Target and many more use RFID technology to track their assets every day.  

ii) Healthcare 

RFID technology started growing in the health care sector over the last decade. It is being 

used for pharmaceuticals in keeping track of the drugs lifeline and preventing counterfeit drugs to 

ensure patient safety. It is also used for tracking hospital equipment and personnel. Patients’ 

medical history, implant and prostheses are also tracked by this technology ensuring an authentic 

data base. Recently RFID is being used to take care of the elderly by tracking their movement with 

a device, either at healthcare facilities or their own homes.  

iii) Access control 

As everything is becoming more accessible in the wireless world it is important to maintain 

a certain level of security. RFID technology ensures access security from doors to parking lots, 

offices, clubs etc. by restricting the access only to authorized users.  

iv) Agriculture 

RFID tags are used in animal tracking for geolocation in a farm or by the owners. The tags 

are either implanted or clamped to their ears or body. This technology is also used in animal 
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diagnostics and crop identification. They are used for early detection of viruses in livestock and 

bacterial, contaminant or pest exposures in crops.  

v) Traffic, transportation, and ticketing 

As one of the more successful and common applications of RFID systems, this area 

includes public transport tickets, congestion detection and management, intelligent traffic lights, 

finding thieves and offenders by automatic vehicle identification and tracking, public parking 

systems, toll collection, smart car keys and many more.  

vi) Monitoring and tracking 

Visibility and tracking with RFID are used in parcel mailbags, luggage handling, digital 

signature, laundry management, library inventory, IT assets and retailing. The supply chain giants 

keep track of their products by RFID systems which increase the store efficiency and make sure 

the products and goods are in stock.  

vii) Human and object identification  

This is the first application of RFID systems. During World War II, it was used to identify 

airplanes. Today, human identification is one of the major application areas of RFID. It includes 

digital ID, electronic passport, facility access etc. In all the cases, it increases efficiency and 

security.  

viii) Finance 

This field includes toll payment systems, smart cards, credit cards, bank note identification 

etc. RFID tags are used to process these remote transactions securely.  

ix) Environment, fuel, chemicals 

RFID system has its impact on environmental processes as well. It is used in waste haulage 

and recycling. After being attached to the waste, the tag will find its way to waste collection, 
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treatment and disposal systems improving automation. It is also used to control the dispensing of 

fuel and chemicals automatically.  

x) Government and military 

Government assets, military logistics, IT assets, access control, and many important arear 

which are highly classified are controlled securely by RFID systems.  

xi) Sports, games and entertainment industry 

RFID systems are used in areas like tracking golf balls, game chips in the large casinos, 

sports event timing and ticketing etc. Disney theme parks also use RFID tags in form of hand bands 

to keep track of their clients and give them access to their parks and rides.   

1.6 Challenges   

Although we talked about RFID’s enormous possibilities, the widespread use of this 

wireless system also brings technical, functional and security issues.  As the number of tags sold 

in the market increases exponentially following key issues arise [2, 8, 9].  

Standardization is one of the main issues as it leaves quite a bit of freedom in the choice of 

tags, communication protocol and format. It may create conflict as the companies need to agree 

on many factors like modulation type, data rate, encoding, frames, anti-collision algorithms etc.  

Collision is another prime example of obstacles in RFID systems. As the number of tags 

in the read range increases and reader attempts to read multiple tags simultaneously, collision 

occurs which results in wastage of bandwidth, energy and time. Many anti-collision protocols 

show efficiency beyond 90% but it needs infrastructural change in the billion-dollar industry which 

is already in place.  



www.manaraa.com

13 

Cost is another issue when it comes to tags. As the required number of tags in fields like 

supply chain monitoring is only increasing the cost should go down even in the case of passive 

tags, to make it easier for the industry to adopt this technology.  

It is difficult to decide on a certain frequency band because the choice depends on several 

key factors like the mode of transmission, the type and behavior of the tagged goods, environment 

in which the product is being read, international standards in frequency allocation etc.  

Signal interference is another obstacle when a number of systems operate in the same 

environment. As this is a wireless system in dense environment where objects create signal 

scattering, refraction, and reflection communication becomes challenging.  

Operating distance of the system is a crucial factor as well. The distance between the tag 

and reader antenna affects the power of the signal which decreases quadratically as the distance 

increases. This is an important issue in situations where the tag and/or the reader is not stationary.  

For optimal system efficiency, antenna polarization and orientation also become an issue, 

especially in environments where the product orientation cannot be controlled.  

20% - 30% of the tags manufactured are defective [2]. So, the faulty tags result in 

ineffective use of channel and bandwidth.  

Faulty identifications by the reader are also crucial factors in RFID systems. It depends on 

many factors like adverse conditions of the environment, improper placement of the tagged 

products or the reader, accidental registration of data from unwanted tags which pass within the 

range of the reader unintentionally, reader malfunction etc.  

As this is an extremely fast evolving industry, there are always new protocol standards 

which can perform faster and are more fault tolerant. This is another issue in the industry because 

the RFID technologies companies adopt quickly become outdated.   



www.manaraa.com

14 

Finally, security and privacy issues are always critical to RFID technology. Encryption 

must be ensured at all interfaces in order to ensure required security, to minimize unauthorized 

access especially for sensitive applications. 
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CHAPTER 2: REVIEW OF ANTI-COLLISION ALGORITHMS AND THE INDUSTRY 

STANDARD FOR PASSIVE RFID SYSTEMS 

 

2.1 Brief Description of Different RFID Anti-Collision Protocols  

In a passive RFID system, the reader identifies the tags by initially broadcasting a query 

signal through its antenna(s). The tags respond to the reader’s query command using backscatter 

modulation. If there is more than one tag transmitting signals at the same time, their packets collide 

resulting in failed transmission. This problem is known as tag collision, a major issue in RFID 

technology as it results in low identification accuracies, increased identification delays, wasted 

bandwidth and power [7]. In Figure 2.1, a common scenario of RFID system is depicted. 

 

Figure 2.1: A common scenario of RFID system  
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Due to random allocation of tags within the communication frame, the highest system 

efficiency is obtained when the current frame length is equal to the number of unidentified tags [5, 

10]. Unfortunately, in a real-life application, unidentified tags are usually unknown to the reader, 

which makes it imperative to adopt effective anti-collision algorithms to enable a single reader to 

read multiple tags in the reader’s field as effectively as possible. In this chapter, we go through the 

basic and major anti-collision protocols which make the basis of RFID technology [3, 6, 11, 12].   

2.1.1 Multiple Access / Anti-Collision Protocols 

 

Figure 2.2: Classification of anti-collision protocols  

As we can see from the Figure 2.2, the anti-collision protocols can be broadly classified 

into four multiple access protocols.  
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In space division multiple access (SDMA), the channel is divided directionally by using 

either directional antennas or multiple readers for the identification process. For the spatial 

separation of the channel, this protocol requires complex antenna design.  

In frequency division multiple access (FDMA), instead of dedicating the whole channel to 

a single communication link, the channel is divided into smaller bandwidths. Each frequency 

region is dedicated to a single tag until the identification is over. This mechanism requires 

complicated reader functionality to perform successful identifications.  

In code division multiple access (CDMA), the tags are required to multiply their ID with a 

pseudo-random code before transmitting it to the reader. The reader then decodes the transmitted 

ID by matching them with a unique code. This system requires intricate functionality on both ends 

because of the computational work that needs to be done for the successful identification process.  

Finally, in time division multiple access (TDMA), the channel bandwidth is divided into 

time slots which is used by the tags and the reader for the communication process. TDMA 

protocols forms the largest family of anti-collision protocols for passive RFID systems because of 

its ease of implementation and reduced complexity.  

As seen from the figure TDMA systems can be further divided into reader driven systems 

also known as Reader-talk-first (RTF) and tag driven systems also known as Tag-talk-first (TTF). 

The former variant allows the reader to command first and the tags will remain silent until it is 

instructed otherwise by the reader. This system is synchronous. On the other hand, the latter works 

in an asynchronous manner, i.e. when a reader is present in the read zone of a tag, it declares itself. 

The TTF RFID systems are slow and more prone to collisions compared to the RTF systems. This 

is one of the reasons why RTF protocols are popular in most applications.  
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TDMA protocols can be further classified into two broad categories, ALOHA and tree 

based protocols as probabilistic and deterministic approaches respectively. 

2.2 Tree Based Protocols 

Tree based protocols use a deterministic approach for slot allocation. Each tag is read with 

a unique ID by singling them out. For the tree based protocols to work, tags are required to have 

muting capability, i.e. the tags are silenced after identification process. A brief overview of existing 

tree based algorithms can be found in Table 2.1 [3, 6, 13, 14]. 

Table 2.1: Brief summary of the tree based protocols 

Criterion 
Query Tree 

(QT) 

Tree Splitting 

(TS) 

Binary Search 

(BS) 

Bitwise 

Arbitration 

(BTA) 

Protocol feature 

The reader 

transmits a query 

and the tags with 

prefix matching 

the query 

respond. 

By splitting 

collided tags into 

disjoint subsets, 

the collisions are 

resolved here. 

The reader sends 

a serial number 

to the tags and 

those with 

values less than 

or equal to the 

serial number 

reply. 

Every tag 

responds in a bit 

by bit manner 

RTF/TTF Reader driven system 

 

Though tree based approach ensures higher throughput with a deterministic approach, it 

has complicated protocols and needs substantial memory overhead and complex hardware to 

implement. In the next section, we will briefly introduce ALOHA based protocols as they are the 

prime focus of this study.  

2.3 ALOHA Based Protocols 

Unlike the tree based protocols ALOHA uses a probabilistic approach for slot allocation.  

ALOHA based protocols are less complex, more robust and requires less bandwidth. Moreover, 

these protocols have dynamic adaptability to varying sizes of tag populations. In contrast to the 

tree based protocols, ALOHA based protocols have a limited number of reader to tag commands 
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[3, 6, 12, 15]. A brief comparison between the tree and ALOHA based protocols is presented in 

Table 2.2.  

Table 2.2: Brief comparison between tree and ALOHA based protocols 

Criterion Tree protocols ALOHA protocols 

Protocol feature 

These protocols operate by 

grouping responding tags into 

subsets and then identifying 

tags in each subset 

sequentially. 

These protocols require tags 

to respond randomly in an 

asynchronous manner or in 

synchronous time slots or 

frames. 

Frequency Mainly UHF and microwave LF, HF and UHF 

Reader to tag commands High Low 

Efficiency versus tag density 
Higher efficiency is 

achievable in high tag density 

Lesser efficiency in high tag 

density 

Method Deterministic Probabilistic 

Optimum channel utilization 43% 
18.4% (PA), 36.8% (BFSA) 

& 37% (DFSA) 

 

In this study, we’ll concentrate on ALOHA protocols. In the next few sections we will 

briefly discuss different ALOHA based protocols which are classified in terms of randomization 

and frame allocation. 

2.3.1 Classification of ALOHA Based Protocols 

2.3.1.1 Pure ALOHA (PA) 

In pure ALOHA, the reader sends out read requests which energize the tags. Each tag 

responds with ID randomly upon being energized. After that the tags wait for the reader’s reply. It 

can be i) a positive acknowledgement (ACK) if the reader receives a tag’s ID successfully or ii) a 

negative acknowledgement (NACK) if there is a complete or partial collision. For the latter case 

tags retransmit their ID after a random interval. However, this partial collision problem limits the 

throughput of the pure ALOHA based systems to 18%. To improve the efficiency, this protocol 

has a few optimized versions which are discussed briefly in the following sections [3, 6, 12, 15].  
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2.3.1.1.1 Pure ALOHA with Muting 

In this type, when a tag is identified successfully by the reader, a ‘mute’ command is sent 

by the reader to that particular tag in order to make it stop responding to future read rounds. In this 

way, the tag load is lessened after each successful communication.  

2.3.1.1.2 Pure ALOHA with Slow Down 

Unlike the previous type, here, the reader sends a ‘slowdown’ command to a tag instead of 

the mute command after the tag has been successfully read. This slowdown command prolongs 

the back-off time of that particular tag which in turn reduces the collision probability.  

2.3.1.1.3 Pure ALOHA with Fast Mode 

In this variant of pure ALOHA, the reader sends out a silence command after it senses the 

start of a tag transmission. As a consequence, all the other tags go to the ‘mute’ mode. The tags 

unmute themselves either after getting an acknowledgement (ACK) command from the reader or 

after the expiration of their wait time.  

2.3.1.1.4 Hybrids 

By combining the variants mentioned above we can have two hybrid types: i) Pure ALOHA 

with fast mode and muting and ii) Pure ALOHA with fast mode and slowdown.  

For the former type, the other tags are silenced using fast mode while a tag starts the 

transmission. After that particular tag is identified, the reader mutes the tag for the rest of the 

rounds ensuring a decreased amount of load.  

In the latter variant, once a tag is identified using fast mode, it is slow downed, i.e.it is told 

by the reader to increase its back-off time, so that other tags can transmit with a lessened 

probability of collision.  
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2.3.1.2 Slotted ALOHA (SA) 

Unlike the pure ALOHA variant where tags respond with their ID on a continuous timeline, 

in the case of slotted ALOHA systems, tags transmit their ID in predefined synchronous time slots. 

Tags are required to respond only at the beginning of a slot so that the collision occurs only at the 

slot boundary. Because of this fitted synchronization there is no partial collision in the slotted 

ALOHA systems.  

Slotted ALOHA has some variants as well which are briefly mentioned in the following 

sections [3, 6, 12, 15]. 

2.3.1.2.1 Slotted ALOHA with Muting and Slowdown 

This type has the same operating principle as pure ALOHA with muting and slowdown but 

here the commands are utilized in a slotted manner.  

2.3.1.2.2 Slotted ALOHA with Early End 

In this variant, the reader is able to close the slot early if no transmission is detected at the 

starting of a slot. Two commands are used for this variant: i) Start-of-frame (SOF) to start a ready 

cycle, and ii) End-of-frame (EOF) to terminate an idle slot. These commands help to terminate an 

idle slot early which in turn helps with the read rate and channel efficiency.  

2.3.1.2.3 Slotted ALOHA with Early End and Muting 

This variant uses both early end and muting principles. A tag is muted by the reader after 

being identified and with the early end feature the reader can terminate a slot early by EOF 

command if it senses an idle slot. 

2.3.1.2.4 Slotted ALOHA with Slowdown and Early End 

This variant is similar to the previous one except instead of being muted an identified tag 

is slow downed by the reader. The reader also uses early end feature for this protocol.  
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2.3.1.3 Frame Slotted ALOHA (FSA) 

The main drawback in the previously mentioned protocols, i.e. pure and slotted ALOHA 

is that the tags respond randomly at least once in a read round which makes for a heavy tag load 

each time. This problem is overcome in frame slotted ALOHA protocol which restricts each tag 

to respond only once in each frame. Here in each reading cycle time is divided into frames and the 

frame is further divided into slots.  

Based on how the reader implements and regulates the frame size, frame slotted ALOHA 

based systems are further divided into three main categories which are briefly discussed in the next 

few sections [3, 6, 12, 15]. 

2.3.1.3.1 Basic Frame Slotted ALOHA (BFSA) 

In this variant, the word ‘basic’ stands for the fact that the frame length is not adjustable, 

and it remains constant throughout the reading process.  

It has four customizations: i) BFSA-no-muting, ii) BFSA-with-muting, iii) BFSA-no-

muting-early-end and iv) BFSA-with-muting-and-early-end, with “affixes” performing as 

explained in the section above. 

2.3.1.3.2 Dynamic Frame Slotted ALOHA (DFSA) 

The main downside of BFSA is that the frame size is fixed throughout the reading process 

which is a big problem when the number of tags significantly exceeds the frame size or vice versa. 

DFSA overcomes this problem with adjustable frame size. Like BFSA, it also works in 

multiple read cycles and can employ early end feature. In order to adjust the frame size the reader 

needs to employ a tag estimation algorithm to estimate the number of tags and frame size. 

However, the limitation of this type is that the maximum frame size is restricted for stable 

operation. 
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2.3.1.3.3 Enhanced Dynamic Frame Slotted ALOHA (EDFSA) 

Enhanced dynamic frame slotted ALOHA protocol estimates the number of tags and 

matches it with number of slots in the current frame size to see if it would yield maximum system 

efficiency or not. If not, the tags are divided into m groups and the protocol calculates what should 

be the value of m, i.e. how many number of groups are required. When the reader sends a tag 

respond in ordered groups. 

Table 2.3: Basic comparison of ALOHA based protocols 

Criterion Pure 

ALOHA 

(PA) 

Slotted 

ALOHA 

(SA) 

Basic Framed 

Slotted 

ALOHA 

(BFSA) 

Dynamic 

Framed 

Slotted 

ALOHA 

(DFSA) 

Enhanced 

Dynamic 

Framed 

Slotted 

ALOHA 

(EDFSA) 

Protocol 

Feature 

Tag’s ID is 

transmitted at 

random 

times. If 

collision 

occurs it 

retransmits 

after a 

random 

delay. 

Tag’s ID is 

transmitted in 

slots, if 

collision 

occurs it will 

retransmit 

after a random 

number of 

slots. 

A tag only has 

one chance to 

transmit in a 

particular 

frame and the 

frame size is 

fixed for the 

whole process. 

A tag 

transmits only 

once in each 

frame and the 

frame size is 

dynamic 

based on the 

tag density. 

If tag density 

exceeds 

maximum 

frame size, 

then the tags 

are divided 

into groups 

and allowed 

to transmit in 

groups. 

Disadvant

age 

Because of 

partial 

collision, as 

the tag 

density 

increases, the 

collision 

increases 

exponentially 

Poor handling 

of high tag 

density and 

needs 

synchronizati

on between 

reader and 

tags. 

Tags require 

synchronizatio

n circuits. 

Need to know 

the current 

frame size for 

maximum 

efficiency. 

Requires 

sophisticated 

readers which 

monitors slots 

with single 

and no 

responses 

along with 

collision. 

Needs a very 

complicated 

reading 

device in 

order to group 

the tags. 

 

In table 2.3 a brief summary and comparison of the ALOHA based protocols are given as 

described earlier in this chapter.  
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2.4 RFID Anti Collision Standards for ALOHA Based Systems 

RFID standards that use ALOHA based systems are listed in Table 2.4 below. These 

standards are managed and maintained by two main bodies: i) EPCglobal and ii) International 

Organization for Standardization (ISO). The former is responsible for developing standards which 

are targeted for international supply chain networks and the latter one is responsible for specifying 

air interface for tracking cattle, payment systems, smart cards and vicinity cards. 

Table 2.4: ALOHA based anti-collision standards 

Standard Frequency Dedicated Protocol 

ISO 18000-3 “MODE 1” HF Pure ALOHA and DFSA 

ISO 18000-3 “MODE 2” HF Combination of both TDMA and FDMA, uses 

slotted ALOHA during transmission 

ISO 14443-3 Type-B HF DFSA 

ISO-18000-6A UHF FSA with muting and early-end 

EPCglobal Class 1 Gen 2 UHF Q protocol which uses DFSA 

EPCglobal Class 1 HF BFSA with early-end 

Philips I Code HF DFSA 

 

Apart from these bodies we also have propriety standards an example of which is shown 

for Philips [3, 6]. 

In this study, we will concentrate on EPC Gen-2 protocol. This is the dominant industry 

standard for passive RFID systems which uses Q protocol with dynamic frame slotted ALOHA to 

solve the collision problem by adjusting the value of Q which in turn adjusts the frame size in each 

cycle. The next section is dedicated to this industry standard with a more detailed description of 

its working mechanism. 

2.5 EPCglobal Class 1 Generation 2 Standard Protocol 

EPC Gen-2 is the global industry standard for passive RFID systems operating in the 

frequency range of 860 MHz to 960 MHz. This standard is built on the Q-protocol which uses 
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DFSA [4, 5]. The flow diagram indicating how the frame size is updated in this standard protocol 

is shown in Figure 2.3.  

The protocol requires the tags to have a random number generator and a slot counter. As 

the reader sends a QUERY command to start the inventory cycle by setting the value of the main 

protocol parameter Q for the tags, the tags must randomly select a number between 0 to 2𝑄 - 1 and 

store it in their slot counter. The value of Q is an integer which ranges from 0 to 15 and sets the 

frame size as 2𝑄.   

 

Figure 2.3: Flow diagram of updating Q parameter in EPC Gen-2 protocol  

The random number picked by each tag represents the slot in the frame in which that 

particular tag can reply to the reader. The tag/s which picked random number 0 reply instantly by 

issuing a random 16-bit identification number, RN-16, by using the random number generator. 

Other tags remain silent but reduce their slot counter by 1 and wait until their turn comes. 

Three possibilities may arise after the tags communicate with the reader: 

i) Idle slot: No tag responds to the reader within the specified time limit by the protocol; 
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ii) Successful slot: Only one tag replying i.e. only one received signal which matches the slot 

number; 

iii) Collision slot: More than one tag respond in the same slot. 

 

 

Figure 2.4: An illustrative example of the modification of Q parameter in EPC Gen-2  

The protocol continues this procedure until all the tags in the read range are identified. The 

most important feature of this protocol is that it adjusts its frame size based on whether a slot is 

idle, successful or collision as shown in Figure. 2.3. The reader modifies the value of Q by using 

another protocol parameter C which varies from 0.1 to 0.5 which is typically preset depending on 
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the tag density in the environment in which the reader is functioning. An illustrative scenario of 

how the frame size is updated in EPC Gen-2 protocol is shown below in Figure 2.4.  

In Figure 2.4 we can see that the number of tags is 8, initial value of Q is 4 and C is set to 

0.3. In the first read cycle the frame breaks in the second slot and no tag is identified successfully. 

However, in the second round two tags are read successfully but the frame breaks after the third 

slot. Two more tags are identified in the third read cycle and the frame breaks again after the third 

slot. In the fourth cycle, the rest of the tags (four) are read successfully and the reading process is 

over. We can see that the frame size varies in each cycle which is determined by the Q protocol. 

In the following chapter, we will briefly introduce different types of tag estimation 

algorithms which will be incorporated with EPC Gen-2 in this study. 
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CHAPTER 3: SELECTED TAG ESTIMATION ALGORTIHMS AND MAXIMUM 

SYSTEM EFFICIENCY FOR DYNAMIC FRAME SLOTTED ALOHA 

 

3.1 Factors Considered for Choosing the Algorithms 

A wide variety of tag estimation algorithms are reported in the literature, some of which 

claim efficiencies beyond 90% [16, 17]. However, these algorithms introduce fundamental 

changes to the underlying protocol framework [16-21] which makes them ineligible to be used 

with the existing hardware running on the EPC Gen-2 [4] platform.  

In this study, we focus on algorithms which do not require substantial updates to the 

protocol and can be utilized on today’s current hardware with minimal modifications. EPC Gen-2 

is already dynamic in adjusting frame sizes based on a posterior knowledge of collusion slots in a 

given frame. For this work, we chose from popular tag estimation algorithms in the literature [22-

26] which are: DFSA-I, DFSA-II [27], 2CTE method [28] and incorporated them with EPC Gen-

2 to see if they can significantly improve its dynamic aspect and compare where they stand in 

terms of system efficiency with and without it. The performance of these tag estimation algorithms 

are also evaluated and compared with the performance of pure EPC Gen-2. It is important to note 

that while integrating these algorithms with EPC Gen-2 to modify the frame size, the protocol is 

not altered in any substantial way.  

We also kept the maximum system efficiency for any MAC layer protocol using DFSA [5, 

10] as the upper bound (which is called DFSA Perfect in this study) to have an impartial 
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comparison between the algorithms. In the following sections, we will briefly introduce different 

types of tag estimation algorithms which will be incorporated with EPC Gen-2. 

3.2 Selected Tag Estimation Algorithms  

3.2.1 Two Conditional Tag Estimation Method  

The 2CTE method claims that the best approach to estimate the number of unresolved tags 

would be to decrease the number of collision and idle slots. In 2CTE, the highest system efficiency 

in DFSA (when the frame size equals the number of unresolved tags in each cycle) [5, 10] is taken 

as a reference point in order to determine the optimal percentage of successful, collision and idle 

slots. The optimal average percentages for successful (OSS), collision (OCS) and idle (OFS) slots 

are calculated and given as 37%, 26% and 37% respectively. The actual percentage of successful 

(CSS), collision (CCS) and idle (CFS) slots are then measured to calculate the differences between 

the measured and optimal values and probabilistically estimate the number of actual tags. Two 

steps have been suggested here: 

i) Decreasing collision slots: 

 If CCS > 50% then the next frame size is increased faster.  

 If 26% < CCS < 50% then to decrease the collision rate, the next frame size is increased. 

ii) Decreasing free slots: 

 If CCS <26% & CFS <50% then the previous frame size is taken into account to 

decrease the current one. 

 If CCS < 26% & CFS > 50% then the frame size is decreased faster. 

After each round of frame identification, the algorithm chooses the best condition to 

estimate the number of unresolved tags. The reader can refer to the original paper for details on 

the numerical estimation [28]. 
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3.2.2 DFSA-I 

In this algorithm [27], to estimate the number of tags (n), the collision ratio (𝐶𝑟𝑎𝑡𝑖𝑜), i.e. 

the ratio of the number of the slots with collision to the frame size (L) is defined by, 

𝐶𝑟𝑎𝑡𝑖𝑜 = 1 − (
1

𝐿
)

𝑛

(1 +  
𝑛

𝐿 − 1
) 

After one complete round, the collision ratio can be measured. Since the frame size is 

already known, based on this information, one can estimate the number of tags by sweeping the 

variable n over a suitable range of values to find the one that best fits the calculated 𝐶𝑟𝑎𝑡𝑖𝑜 and the 

frame size [27]. This algorithm has some drawbacks not addressed in the original article, including 

the extreme boundary conditions such as when 𝐶𝑟𝑎𝑡𝑖𝑜 becomes 1. In those instances, DFSA-1 

provides inaccurate estimation of the number of tags and a variation of the algorithm, DFSA-II, is 

used to estimate the number of tags as described below. 

3.2.3 DFSA-II  

In this variation [27], to obtain the number of colliding tags in a slot, the collision rate 

(𝐶𝑟𝑎𝑡𝑒) is defined as follows: 

𝐶𝑟𝑎𝑡𝑒 = 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑖𝑛 𝑎 𝑠𝑙𝑜𝑡

1−𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎 𝑡𝑎𝑔 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦
 

From [5, 10], we know that the system reaches maximum throughput when optimal frame 

size (𝐿𝑜𝑝𝑡𝑖𝑚𝑎𝑙) is equal to the number of tags (𝑛). Hence, the optimal collision rate Crate for 

maximum throughput can subsequently be found as: 

𝐶𝑟𝑎𝑡𝑒 =  lim
𝑛→∞

𝑃𝑐𝑜𝑙𝑙

1− 𝑃𝑠𝑢𝑐𝑐
 = 0.4180 

The number of tags (𝐶𝑡𝑎𝑔𝑠) collided in a slot is then calculated by, 

𝐶𝑡𝑎𝑔𝑠 =  
1

𝐶𝑟𝑎𝑡𝑒
= 2.3922 
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Let 𝑀𝑐𝑜𝑙𝑙 be the number of collided slots in a frame after a round. The estimated number 

of the tags (𝑛) is then calculated by, 

𝑛 = 2.3922 ∗ 𝑀𝑐𝑜𝑙𝑙  

3.3 Maximum System Efficiency in Dynamic Frame Slotted ALOHA 

For the evaluation of the tag estimation algorithms, i.e. how they perform with and without 

EPC Gen-2, we kept the maximum system efficiency for any MAC layer protocol using DFSA 

[10] as the upper bound which is named DFSA perfect (DFSA-P) here in this thesis. The expected 

maximum efficiency can be estimated from the following equation: 

𝐸{𝑒𝑓𝑓𝑚𝑎𝑥} = 𝑛 (
1

𝑁
) (1 −

1

𝑁
)

𝑛−1

 

where, N is the frame size & n is the responding tag population which indicates the optimal value 

for expected maximum efficiency and can be defined as follows:  

𝑛 =  ⌈ − 
1

𝑙𝑛 (1 − 
1
𝑁)

 ⌉ 

Based on this calculation, the expected maximum efficiency is approximately 37% when 

the total number of tags in the read range is more than 50 [5]. In DFSA-P, we assume that the tag 

estimation algorithm works with a theoretical 100% accuracy, which means at the end of a frame 

one can know exactly how many unresolved tags remain in the read field. Similar to 2CTE, DFSA-

I and DFSA-II, we used this algorithm with and without EPC Gen-2, to compare how each tag 

estimation algorithm would have performed if their accuracies were closer to the highest 

theoretical accuracy compared to simply using pure EPC Gen-2 algorithm.  
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CHAPTER 4: EXPERIMENTAL DESIGN AND EVALUATION OF THE 

ALGORITHMS W.R.T. EPC GEN-2 

 

4.1 Experimental Design 

In this study, we incorporate EPC Gen-2 [4, 5] with 2CTE [28], DFSA-I and DFSA-II [27] 

algorithms as described in the previous section to see if they can improve the efficiency of this 

standard protocol. As another baseline comparison, we include a perfect estimation algorithm 

(DFSA-P) which simply assumes the number of tags in the environment at every step of the 

simulation is known. EPC Gen-2 protocol adjusts its frame size by the parametric variable C 

depending on whether the slot is idle, successful or in collision [5]. Admittedly, this pattern of 

frame size update is dynamic by itself however no study has looked at how much more dynamic 

and efficient it can get when supported by different tag estimation algorithms. The EPC Gen-2 

protocol is modified only when the frame size is updated. Otherwise, we kept the reader-tag 

communication method intact as per the standard protocol. The proposed experimental framework 

is shown in Figure 4.1.  

Three scenarios are considered where the algorithms are used: 

i) Only when there is no frame update until the very end of the frame, i.e., if the frame breaks 

early then the frame size is updated purely by EPC Gen-2. 

ii) Only when the frame update occurs after mid-frame, if not then EPC Gen-2 takes over. 

iii) In the absence of any EPC Gen-2 frame update mechanism, i.e. the algorithms are solely 

responsible for determining the next frame size. 
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Figure 4.1: Flow diagram of Gen-2 incorporated with tag estimation algorithms 

If EPC Gen-2 breaks the frame and either of these conditions are met, the new frame size 

is created with the modified Q value and the size of the new frame is equal to the minimum of 215  

and 2𝑄 (where, Q is modified by the tested algorithm). Otherwise Q value is modified by EPC 

Gen-2, as usual. We can see in Figure4.1. DFSA-P (perfect) [5, 10] is included along with the 

other algorithms. This represents an upper bound in estimation accuracy.  

 
4.2 Parameters for Performance Evaluation 

4.2.1 Efficiency 

We kept efficiency as the first parameter for comparing the effects of the algorithms which 

is defined as follows. 
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𝐸𝑓𝑓 (%) =  
𝑁

𝑁𝑇
∗ 100% 

where, 𝑁 = number of tags in the read range & 𝑁𝑇 = total number of slots used for the identification 

process of the entire tag population. 

4.2.2 Utilization Rate 

We evaluated the algorithms when they performed with and without EPC Gen-2. However, 

for the EPC Gen-2 case, we also kept track of how often the algorithms were used in resolving all 

the tags. Here the aim is to see the relationship between the efficiency and how often algorithms 

are utilized. We measured utilization rate for each algorithm by: 

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑖𝑠 𝑢𝑠𝑒𝑑

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑤ℎ𝑒𝑛 𝑎 𝑛𝑒𝑤 𝑓𝑟𝑎𝑚𝑒 𝑖𝑠 𝑐𝑟𝑒𝑎𝑡𝑒𝑑
   

4.2.3 Estimation Error 

Another parameter we chose for evaluating the tag estimation algorithm is the estimation 

error, i.e. how accurately the algorithms can estimate the number of tags in the read range. We 

wanted to see if the accuracy of the algorithms help boost the overall efficiency. The estimation 

error is calculated as follows: 

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠
 

4.3 Tools and Simulation 

It’s difficult to calculate such efficiency improvement analytically, so we designed our own 

simulation approach to measure these performance parameters. We started from [30], where a 

simulation tool for EPC gen-2 is developed. We eliminated all the auxiliary parameters from that 

algorithm and focused only on the system efficiency and a light-weight, verifiable simulation tool 

in MATLAB precisely designed and validated for this standard protocol. To evaluate the 
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performance of the algorithms under different scenarios and with and without EPC Gen-2 we 

modified it and presented a scalable and flexible simulation framework. We did the modification 

at the frame size update stage based on the three scenarios as described earlier.  

4.4 Performance Evaluation 

As we discussed earlier, we evaluated the tag estimation algorithms based on three 

parameters: 1. Efficiency; 2. Utilization rate & 3. Estimation error. For each performance assessing 

parameter we settled for literature standard choices of C = 0.2 and Q = 2 & 4 for the standard 

protocol. The simulations were performed for N = 10, 100, 300 & 500, where N is the number of 

tags to evaluate both low and high tag density environments. The number iteration for each 

simulation is subject to the statistical significance of performance evaluating parameters.  

For efficiency, for N = 10, 100, 300 & 500, the simulations were repeated for a minimum 

of 1000 times to achieve the highest statistical significance and consistent results.  

As for the other two parameters, i.e. estimation error and utilization rate, we fixed the 

number of tags to be 100 (N = 100) for a more in-depth look. We also chose only DFSA-I and 

DFSA-II for this study because these algorithms show the highest compatibility w.r.t Gen-2 and 

DFSA-P. The other algorithm, i.e. 2CTE did not perform as well in terms of system efficiency. 

The simulations were repeated for 200,000 times in order to obtain enough data points for 

analyzing the statistical behavior of the algorithms.   

4.4.1 Efficiency vs Number of Tags 

We compared the performance of each algorithm in terms of efficiency with and without 

EPC Gen-2 to the following reference points. 

i) Pure EPC Gen-2; 

ii) EPC Gen-2 supported with DFSA-P i.e. the maximum theoretical estimation accuracy &   
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iii) Pure DFSA-P.  

The efficiency comparisons of the algorithms with and without EPC Gen-2 under different 

scenarios alongside pure EPC Gen-2 and DFSA-P are summarized in the following figures. As 

discussed earlier, for comparing efficiencies we considered three scenarios: 

i) When frame update occurs at the end of the frame; 

ii) When frame update occurs after mid-frame; 

iii) When there is no EPC Gen-2 frame update mechanism, i.e. the tag estimation algorithms 

perform on their own, at the end of each frame.  

For all the scenarios and Q values of 2 and 4, we compared the efficiency of the algorithms 

for N = 10,100, 300 & 500. 

The following two figures are for the first case, i.e. frame update occurs at the end of the 

frame for both Q values.  

 

Figure 4.2: Efficiency comparison of the algorithms for Q = 2 & Frame Size 
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Figure 4.3: Efficiency comparison of the algorithms for Q = 4 & Frame Size 

We can see from Figure 4.2 and 4.3, at low tag densities (0-100) DFSA-II out performs 

other algorithms. However, as the number of tags increases all algorithms including Gen-2 

performs quite similarly. It is noticeable, that for Q = 4, DFSA-II and perfect DFSA (DFSA-P) 

perform quite similarly. For both combinations, 2CTE method lags in terms of efficiency.    

The following two figures are for the second case, i.e. when the frame update occurs after 

the mid-frame for Q = 2 and 4.  

 

Figure 4.4: Efficiency comparison of the algorithms for Q = 2 & (>Frame Size/2) 
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Figure 4.5: Efficiency comparison of the algorithms for Q = 4 & (>Frame Size/2) 

For this case, in both figures (4.4 and 4.5), we can see the same behavior as in the case 

shown in Figure 4.2 and 4.3. 

The final two figures for efficiency comparison are for the third case, i.e. when there is no 

EPC Gen-2 frame update mechanism for both Q values.  

 

Figure 4.6: Efficiency comparison of the algorithms for Q = 2 & No Gen-2 
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Figure 4.7: Efficiency comparison of the algorithms for Q = 4 & No Gen-2 

These plots in Figure 4.6 and 4.7 tell a different story. We can see when the algorithms 

fully replace Gen-2, for tag density up to 50, only DFSA-II can out perform Gen-2, but after 

approximately 50 tags, Gen-2 takes over.  

A more precise and numerical comparison of performances in terms of efficiency and 

standard deviation can also be seen in tables 4.1 – 4.6. 

Table 4.1: Performance comparison in terms of efficiency and standard deviation of the 

algorithms for Q = 2, C= 0.2 & Frame Size 

No. 

of 

Tags 

DFSA - I DFSA - II 2CTE Gen-2 DFSA - P 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

10 30.2464 15.3759 38.3667 8.7448 34.0796 7.4397 35.7212 7.8956 39.304 9.3405 

100 33.1252 2.5238 33.3188 2.5615 32.5995 2.6695 33.0164 2.4869 33.3605 2.5407 

300 33.7778 1.4811 33.8781 1.5797 32.6850 2.6126 33.6865 1.5647 33.8094 1.5557 

500 33.9804 1.2163 33.9888 1.2204 32.6869 2.5907 33.8956 1.2128 34.0223 1.2497 
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Table 4.2: Performance comparison in terms of efficiency and standard deviation of the 

algorithms for Q = 4, C= 0.2 & Frame Size 

No. 

of 

Tags 

DFSA - I DFSA - II 2CTE Gen-2 DFSA - P 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

10 38.1730 8.7903 39.9726 8.9726 34.7896 8.6706 36.6938 7.9406 39.9449 8.8312 

100 34.2563 2.6965 34.4629 2.7346 33.1234 2.7610 34.1734 2.6747 34.4965 2.7442 

300 34.1483 1.6121 34.2371 1.5791 32.8719 2.6889 34.1311 1.5522 34.3157 1.5697 

500 34.0851 1.2077 34.1806 1.2299 32.8883 2.6757 34.1741 1.2124 34.2009 1.2560 

 

Table 4.3: Performance comparison in terms of efficiency and standard deviation of the 

algorithms for Q = 2, C= 0.2 & (>Frame Size/2) 

No. 

of 

Tags 

DFSA - I DFSA - II 2CTE Gen-2 DFSA - P 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

10 36.7559 7.9856 38.4107 8.8200 34.1229 7.1362 35.7212 7.8956 39.7791 9.2725 

100 33.2267 2.5935 32.8701 2.5966 32.3529 2.7122 33.0164 2.4869 35.3021 2.8387 

300 33.7192 1.5015 33.6628 1.6022 32.6542 2.6023 33.6865 1.5647 34.8442 1.6742 

500 33.9041 1.2016 33.8096 1.2199 32.6685 2.5833 33.8956 1.2128 34.5931 1.2401 

 

Table 4.4: Performance comparison in terms of efficiency and standard deviation of the 

algorithms for Q = 4, C= 0.2 & (>Frame Size/2) 

No. 

of 

Tags 

DFSA - I DFSA - II 2CTE Gen-2 DFSA - P 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

10 38.7468 9.2075 39.8472 9.4322 34.9160 8.7949 36.6938 7.9406 41.1367 9.8671 

100 34.1754 2.7046 33.8281 2.7320 32.7911 2.7636 34.1734 2.6747 34.6779 2.7446 

300 34.1306 1.6106 33.9611 1.5882 32.8461 2.6851 34.1311 1.5522 34.2603 1.5966 

500 34.0465 1.2021 34.0735 1.2322 32.8695 2.6722 34.1741 1.2124 34.1717 1.2155 
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Table 4.5: Performance comparison in terms of efficiency and standard deviation of the 

algorithms for Q = 2, C= 0.2 & No Gen-2 

No. 

of 

Tags 

DFSA - I DFSA - II 2CTE Gen-2 DFSA - P 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

10 36.1029 8.2952 38.6336 8.5950 34.4941 6.6283 35.7212 7.8956 39.5341 9.3056 

100 28.7261 2.8581 30.8829 2.0561 27.7408 2.5903 33.0164 2.4869 36.2928 2.7255 

300 28.8061 1.7309 30.3195 1.2475 26.0973 1.6970 33.6865 1.5647 36.4028 1.5004 

500 29.2216 1.0073 29.5971 0.8953 27.2420 1.9182 33.8956 1.2128 36.4437 1.2533 

 

Table 4.6: Performance comparison in terms of efficiency and standard deviation of the 

algorithms for Q = 4, C= 0.2 & No Gen-2 

No. 

of 

Tags 

DFSA - I DFSA - II 2CTE Gen-2 DFSA - P 

Eff. 

(%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviati

on 

Eff. (%) 

Std. 

Deviatio

n 

Eff. (%) 

Std. 

Deviatio

n 

Eff. 

(%) 

Std. 

Deviatio

n 

10 34.8616 8.1240 40.1618 9.0587 33.8109 8.6592 36.6938 7.9406 40.2419 9.0816 

100 29.8044 3.0294 32.1351 2.2016 28.6736 2.7754 34.1734 2.6747 34.8552 2.4978 

300 29.1125 1.7153 30.6931 1.2668 26.4974 1.7527 34.1311 1.5522 35.8419 1.5309 

500 29.4303 1.0089 29.8559 0.9011 27.3303 1.9914 34.1741 1.2124 36.1738 1.2245 

 

If we look at the performances of the algorithms as represented both in Fig. 4.2 - 4.5 & 

Table 4.1 – 4.4, when incorporated with EPC Gen-2 for Q = 2 & 4 and for different scenarios, one 

can see that for low tag density (N = 10 - 100) environments, DFSA-I and II have higher system 

efficiency than pure EPC Gen-2 (with DFSA-II having slightly better performance), where 2CTE 

method lags. However, as one proceeds towards higher tag density environments we can see that 

DFSA-I, DFSA-II and pure EPC Gen-2 show almost identical performances. The slight differences 

in efficiencies for Q = 4 and >frame size/2 (Fig. 4.5 & Table 4.4) case are not statistically 

significant. In all cases, although 2CTE method shows lesser performance than other techniques, 
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it is noticeable that it gives a consistent result independent of the scenario and choice of Q value 

as described by the authors of the original 2CTE method article [6]. When algorithms are used 

without Gen-2 (Figure 4.6 – 4.7 & Table 4.5 – 4.6), we can see a similar situation where for a low 

number of tags (N = 10-50), DFSA-II provides better performance than pure EPC Gen- 2, and 

DFSA-I perform equally well with 2CTE method lagging behind. However, for higher tag density 

environments pure EPC Gen-2 has consistently and significantly higher efficiency than all other 

algorithms, whereas DFSA-P shows the highest performance irrespective of the scenario and Q 

values as expected [1] [4]. We can also see from Table 4.1 – 4.6 that the algorithms behaved quite 

similarly in terms of standard deviation on efficiency. For all the cases, the standard deviation is 

highest for low tag densities (especially N=10) and as the number of tags goes higher, the deviation 

on efficiency stabilizes as expected from any probabilistic algorithm. 

4.4.2 Effects of Utilization Rate and Estimation Error on Efficiency 

As mentioned earlier, in this study, we will analyze the effects of these parameters on 

DFSA-I, DFSA-II and DFSA-P and learn the behavior of these algorithms. We plotted the 

estimation error and the utilization rate of the algorithms against efficiency to see what kind of 

effect these parameters have on the overall efficiency of each algorithm. We evaluated these 

phenomena for a specific number of tag population (for N = 100) to have a more in-depth look. 

For this we first plotted the histogram of the utilization rate and estimation error to see the 

distribution of data points. Then we plotted utilization rate and estimation error for these data 

points and their corresponding efficiencies.  

4.4.2.1 Utilization Rate vs Efficiency 

For analyzing the effect of utilization rate on efficiency, first we study the histogram of the 

utilization rate to see the distribution of data points.  
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We plotted the effect of utilization rate on the efficiency for two scenarios:  

i) When the frame update occurs at the end of the frame, and  

ii) When the frame update occurs after mid-frame.  

We do not consider the no Gen-2 case as the utilization rate is obviously 100%. We 

observed that regardless of the type of algorithm the rate of utilization is very low around 5% and 

10% for the first and second scenarios respectively. This may be because of the fact that EPC gen-

2 cuts frames short more often than not.  

The following figure shows the histograms of the utilization rate for DFSA-I, DFSA-II and 

DFSA-P respectively for Q = 2 and for the case where frame update occurs at the end of the frame.  

 

 

Figure 4.8: Histogram of utilization rate for DFSA-I, II & P (Q = 2, C = 0.2 & Frame Size) 
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Figure 4.8 (Continued) 

 

Figure 4.9: Utilization rate vs efficiency for DFSA-I, II & P (Q = 2, C = 0.2 & Frame Size) 



www.manaraa.com

45 

We can see from Figure. 4.8, that for each algorithm the utilization rate ranges from 0% to 

10% and majority of the data points accumulate around 5% which is low. However, from Fig. 4.9 

we can see an upward trend in efficiency with increasing utilization rate regardless of the type of 

algorithms which is very promising. DFSA-I demonstrates the steepest increase compared to the 

other two algorithms. On the other hand, DFSA-II and DFSA-P show quite similar performance.  

The next figure is the histograms of the utilization rate for DFSA-I, DFSA-II and DFSA-P 

respectively for Q = 4 and for the case where frame update occurs at the end of the frame. 

 

 

Figure 4.10: Histogram of utilization rate for DFSA-I, II & P (Q = 4, C = 0.2 & Frame Size) 
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Figure 4.10 (Continued) 

 

Figure 4.11: Utilization rate vs efficiency for DFSA-I, II & P (Q = 4, C = 0.2 & Frame Size) 
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In Figure 4.10 we can see a similar kind of distribution as the previous one, which depicts 

low utilization rate. Figure 4.11 also shows the same kind of upward trend for all the algorithms. 

DFSA-I has the highest slope among the three algorithms for this set of parameters as well.  

Rest of the figures in this section deals with the scenario where the frame update occurs 

after mid-frame. The first figure for the second scenario shows the histograms of the utilization 

rates for DFSA-I, DFSA-II and DFSA-P respectively for Q = 2 and for the case where frame update 

occurs after mid-frame. 

 

 

Figure 4.12: Histogram of utilization rate for DFSA-I, II & P (Q = 2, C = 0.2 & >Frame Size/2) 
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Figure 4.12 (Continued) 

 

Figure 4.13: Utilization rate vs efficiency for DFSA-I, II & P (Q = 2, C = 0.2 & >Frame Size/2) 
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Figure 4.12 shows the distribution of all three algorithms for Q = 2 and when the frame 

update occurs after mid frame. As expected, we can see from the distribution that for >frame Size/2 

case, the rate is higher than the first scenario where the frame update occurs at the end of the frame 

as it is more probable that a cycle will reach mid-frame. However, in Figure 4.13 the trend is still 

the same but the slope drops for all the algorithms compared to the previously mentioned scenario.  

Also, the slope is kind of similar for all the algorithms except for DFSA-II being just a bit lower 

which can be overlooked as the variation is not statistically significant.   

The figure below shows the histograms of the utilization rate for DFSA-I, DFSA-II and 

DFSA-P respectively for Q = 4 and for the case where frame update occurs after mid-frame. 

 

 

Figure 4.14: Histogram of utilization rate for DFSA-I, II & P (Q = 4, C = 0.2 & >Frame Size/2)  
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Figure 4.14 (Continued) 

 

Figure 4.15: Utilization rate vs efficiency for DFSA-I, II & P (Q = 4, C = 0.2 & >Frame Size/2) 

From Figure 4.14 we can see a similar kind of distribution for the utilization rate, where 

most of the data points are gathered around 10% to 20% which is 5% to 15% higher than that of 
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the first scenario as expected. Figure 4.15 shows a similar trend but DFSA-I and DFSA-P shows 

higher slope compared to the Q = 2 case for the same scenario, whereas DFSA-II is more flat.  

For all the conditions and parameters, we considered for analyzing the effect of utilization 

rate on efficiency for the chosen algorithms, we can summarize by saying that even though the 

algorithms weren’t utilized often, increasing utilization rates have yielded higher efficiencies. 

Hence, if these algorithms can be better utilized, the efficiency can further be improved.  

4.4.2.2 Estimation Error vs Efficiency 

We analyzed the relationship between the estimation error and channel efficiency. No Gen-

2 case was used to isolate the effect of prediction accuracy. In other cases, the utilization rates 

were very low and Gen-2 dictates over 90% - 95% of the time preventing the algorithms to exhibit 

their true performance in estimating the number of tags.  

We plotted the efficiency against the estimation error separately for each algorithm. The 

following two plots are for DFSA-I algorithm for Q = 2 & 4.  

 

Figure 4.16: Estimation error vs efficiency for DFSA-I (Q = 2 & 4, C = 0.2 & No Gen-2) 
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We can see from these plots that the algorithm behaves similarly for both Q = 2 & 4. One 

can observe an overall downward trend, as expected, although there is some fluctuation and the 

efficiency differences between the minimum and maximum points of the graphs are insignificant. 

To further study this behavior we plotted the histogram of the estimation error for DFSA-I to have 

a clear vision on how many times the number of tags were under and overestimated.  

 

Figure 4.17: Histograms of estimation error for DFSA-I (Q= 2 &4, C = 0.2 & No Gen-2) 

We can see from Figure 4.17 that the estimation error is roughly equally distributed around 

zero mean which can explain the fluctuations in Figure 4.16. One can assume that, if the estimation 

error is equally and normally distributed around zero, it has no statistically significant impact on 

the efficiency as the over and underestimations have a cancelling effect on one another.  

On the other hand, Figure 4.18 shows the estimation error versus efficiency curves for the 

same settings for DFSA-II algorithm. Here, we can see that as the estimation error gets higher 

efficiency increases, which is against the common logic. To study this behavior closer, we plotted 

the histogram of the estimation error for DFSA-II.  
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Figure 4.18: Estimation error vs efficiency for DFSA-II (Q = 2 & 4, C = 0.2 & No Gen-2) 

 

Figure 4.19: Histogram of estimation error for DFSA-II (Q=2 & 4, C = 0.2 & No Gen-2)  
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Figure 4.19 shows that the estimation error for this case has a different statistical 

distribution with non-zero mean. In other words, this algorithm is more inclined to underestimate 

the number of tags than overestimate. Considering the fact that the inclination of this algorithm 

towards underestimation is somehow helping the system performance, we designed a new 

experiment. We modified DFSA-P and intentionally introduced biased error with a similar 

distribution to DFSA-II. The histogram of the estimation error for DFSA-P and Q = 4 is as follows.  

 

Figure 4.20: Histogram of estimation error for DFSA-P (Q = 4, C = 0.2 & No Gen-2) 

As we can see from Figure 4.20 error-modified DFSA-P now underestimates the number 

of tags just like DFSA-II. However, when we plotted estimation error against efficiency to 

compare with DFSA-II we obtained Figure 4.21 which is similar to DFSA-I (decreasing efficiency 

with increasing estimation error).  
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Figure 4.21: Estimation error vs efficiency for DFSA-P (Q = 4, C = 0.2 & No Gen-2) 

From Figure 4.21, it is apparent that underestimating the number of tags does not necessarily help 

the system efficiency. In this case, the unique behavior of DFSA-II needs to be studied further as 

part of future work. 
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CHAPTER 5: CONCLUSION 

 

In this study, we present a novel framework for true assessment and comprehensive 

analysis of probabilistic tag estimation algorithms when integrated with RFID Gen-2 in terms of 

statistically significant correlations between channel efficiency, algorithm estimation accuracy and 

utilization rate.  

As far as the channel efficiency is concerned, the results clearly demonstrate that at low 

tag density environments two of the tested algorithms may improve the efficiency of pure EPC 

Gen-2 frame allocation scheme. However, as the number of tags increases, simulating high-volume 

application scenarios, none of the algorithms actually presented a statistically significant increase 

to efficiency regardless of how they are incorporated with EPC Gen-2 unless the estimation was 

perfectly accurate as in the case of DFSA-P. We conclude that unless one alters the existing 

hardware infrastructure including the RFID readers and tags across a multitude of industries, which 

would cost billions of dollars, EPC Gen-2 performs respectably in approaching the theoretical 

maximum efficiency allowed by randomized frame-slotted ALOHA algorithms.  

We also performed an in-depth analysis of the two probabilistic algorithms, DFSA-I and 

DFSA-II as these algorithms show highest system efficiency among the chosen ones. In general, 

the channel efficiency seems to increase with increasing utilization rate (especially for DFSA-I 

algorithm). A different procedure of utilizing the algorithm more, may boost the efficiency higher. 

However, this increase is bounded as 100% utilization rate (no Gen-2) results in worse 

performance than 0% utilization rate (Pure Gen-2). As far as the estimation error is concerned, 
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when it is equally and normally distributed around zero (0), there is no statistically significant 

impact on channel efficiency which we can see in the case of DFSA-I. On the other hand, if the 

error distribution has a non-zero mean, it may have an opposite impact, which needs to be studied 

further as part of the future work. In designing the experimental setup, we used a scalable and 

flexible simulation framework and created a light-weight, verifiable Gen-2 simulation tool to 

measure these performance parameters as it is very difficult, if not impossible, to calculate system 

performance analytically. We hope that other researchers can easily use this framework to test and 

compare more algorithms in the literature with Gen-2 and other DFSA based counterparts.  

 



www.manaraa.com

58 

 
 

 

 

 

 

REFERENCES 

 

[1] Roberti, M., Wal-Mart begins RFID process changes. RFID Journal, 2005: p. 1385- 

[2] Ilie-Zudor, E., et al., The RFID technology and its current applications. proceedings of the 

 modern information technology in the innovation processes of the industrial enterprises-

 MITIP, 2006. 5(7). 

[3] Bolic, M., D. Simplot-Ryl, and I. Stojmenovic, RFID systems: research trends and 

 challenges. 2010: John Wiley & Sons. 

[4] EPCglobal, E., Radio-Frequency Identity Protocols Generation-2 UHF RFID specification 

 for RFID air interface protocol for communications at 860 MHz–960 MHz, version 2.0. 0. 

 GS1, EPCglobal, 2013. 

[5] Uysal, I. and N. Khanna. Q-frame-collision-counter: A novel and dynamic approach to 

 RFID Gen 2's Q algorithm. in RFID Technology and Applications (RFID-TA), 2015 IEEE 

 International Conference on. 2015. IEEE. 

[6] Klair, D.K., K.-W. Chin, and R. Raad, A survey and tutorial of RFID anti-collision 

 protocols. IEEE Communications Surveys & Tutorials, 2010. 12(3): p. 400-421. 

[7] Finkenzeller, K., RFID handbook: fundamentals and applications in contactless smart 

 cards, radio frequency identification and near-field communication. 2010: John Wiley & 

 Sons. 

[8] Shields, A., et al., Radio Frequency Identification (RFID). Wiley Encyclopedia of 

 Electrical and Electronics Engineering. 

[9] Want, R., An introduction to RFID technology. IEEE pervasive computing, 2006. 5(1): p. 

 25-33. 

[10] Lee, S.-R., S.-D. Joo, and C.-W. Lee. An enhanced dynamic framed slotted ALOHA 

algorithm for RFID tag identification. in Mobile and Ubiquitous Systems: Networking and 

Services, 2005. MobiQuitous 2005. The Second Annual International Conference on. 2005. 

IEEE. 

[11] Kodialam, M. and T. Nandagopal. Fast and reliable estimation schemes in RFID systems. 

 in Proceedings of the 12th annual international conference on Mobile computing and 

 networking. 2006. ACM. 



www.manaraa.com

59 

[12] Patil, K., et al., Comparative Analysis of Anti-Collision Protocols in RFID. IJAEMS: Open 

 Access International Journal: Infogain Publication. 2(Issue-4). 

[13] Hush, D.R. and C. Wood. Analysis of tree algorithms for RFID arbitration. in Information 

 Theory, 1998. Proceedings. 1998 IEEE International Symposium on. 1998. IEEE. 

[14] Capetanakis, J., Tree algorithms for packet broadcast channels. IEEE transactions on 

 information theory, 1979. 25(5): p. 505-515. 

[15] Abramson, N. THE ALOHA SYSTEM: another alternative for computer communications. 

 in Proceedings of the November 17-19, 1970, fall joint computer conference. 1970. ACM. 

[16] Wong, C. and Q. Feng, Grouping based bit-slot ALOHA protocol for tag anti-collision in 

 RFID systems. IEEE Communications Letters, 2007. 11(12). 

[17] Yihong, C., et al., Multiple-bits-slot reservation ALOHA protocol for tag identification. 

IEEE  Transactions on Consumer Electronics, 2013. 59(1): p. 93-100. 

[18] Su, J., et al., An effective frame breaking policy for dynamic framed slotted ALOHA in 

RFID.  IEEE Communications Letters, 2016. 20(4): p. 692-695. 

[19] Liu, X., et al., Multi-category RFID estimation. IEEE/ACM transactions on networking, 

 2017. 25(1): p. 264-277. 

[20] Šolić, P., J. Radić, and N. Rožić, Energy efficient tag estimation method for ALOHA-based 

 RFID systems. IEEE Sensors Journal, 2014. 14(10): p. 3637-3647. 

[21] Kong, L., et al. A parallel identification protocol for RFID systems. in INFOCOM, 2014 

 Proceedings IEEE. 2014. IEEE. 

[22] Arjona, L., et al., Fast fuzzy anti-collision protocol for the RFID standard EPC Gen-2. 

 Electronics Letters, 2016. 52(8): p. 663-664. 

[23] Chen, W.-T., Optimal Frame Length Analysis and an Efficient Anti-Collision Algorithm 

 With Early Adjustment of Frame Length for RFID Systems. IEEE Transactions on 

 Vehicular Technology, 2016. 65(5): p. 3342-3348. 

[24] Chen, W.-T. A new RFID anti-collision algorithm for the EPCglobal UHF class-1 

 generation-2 standard. in Ubiquitous Intelligence & Computing and 9th International 

 Conference on Autonomic & Trusted Computing (UIC/ATC), 2012 9th International 

 Conference on. 2012. IEEE. 

[25] Vales-Alonso, J., et al., Multiframe maximum-likelihood tag estimation for RFID 

 anticollision protocols. IEEE Transactions on Industrial Informatics, 2011. 7(3): p. 487-

 496. 



www.manaraa.com

60 

[26] Chen, W.-T., A feasible and easy-to-implement anticollision algorithm for the EPCglobal 

 UHF class-1 generation-2 RFID protocol. IEEE Transactions on Automation Science and 

 Engineering, 2014. 11(2): p. 485-491. 

[27] Cha, J.-R. and J.-H. Kim. Novel anti-collision algorithms for fast object identification in 

 RFID system. in Parallel and Distributed Systems, 2005. Proceedings. 11th International 

 Conference on. 2005. IEEE. 

[28] HajMirzaei, M. and Z. Adelani. 2 Conditional tag estimation method for DFSA algorithms 

 in RFID systems. in Computer and Knowledge Engineering (ICCKE), 2014 4th 

 International eConference on. 2014. IEEE. 

[29] Zhang, X., T. Chen, and F. Hu, RFID Tags Estimation through the Statistics Method for 

 ALOHA. International Journal of Computer and Electrical Engineering, 2014. 6(3): p. 259. 

[30] Landaluce, H., A. Perallos, and I. Angulo. A simulation tool for RFID EPC Gen2 protocol. 

 in Information Systems and Technologies (CISTI), 2012 7th Iberian Conference on. 2012. 

 IEEE. 

 


	University of South Florida
	Scholar Commons
	June 2017

	Comparative Analysis of Tag Estimation Algorithms on RFID EPC Gen-2 Performance
	Arundhoti Ferdous
	Scholar Commons Citation


	tmp.1507291223.pdf.YWMyo

